Introduction: Critical for the diagnosis and treatment of chronic pain is the anatomical distribution of pain. Several body maps allow patients to indicate pain areas on paper; however, each has its limitations. Objectives: To provide a comprehensive body map that can be universally applied across pain conditions, we developed the electronic Collaborative Health Outcomes Information Registry (CHOIR) self-report body map by performing an environmental scan and assessing existing body maps. Methods: After initial validation using a Delphi technique, we compared (1) pain location questionnaire responses of 530 participants with chronic pain with (2) their pain endorsements on the CHOIR body map (CBM) graphic. A subset of participants (n = 278) repeated the survey 1 week later to assess test-retest reliability. Finally, we interviewed a patient cohort from a tertiary pain management clinic (n = 28) to identify reasons for endorsement discordances. Results: The intraclass correlation coefficient between the total number of body areas endorsed on the survey and those from the body map was 0.86 and improved to 0.93 at follow-up. The intraclass correlation coefficient of the 2 body map graphics separated by 1 week was 0.93. Further examination demonstrated high consistency between the questionnaire and CBM graphic (\textless10% discordance) in most body areas except for the back and shoulders (\$\approx\$15-19% discordance). Participants attributed inconsistencies to misinterpretation of body regions and laterality, the latter of which was addressed by modifying the instructions. Conclusions: Our data suggest that the CBM is a valid and reliable instrument for assessing the distribution of pain.
Publications
2021
OBJECTIVES: High-frequency and burst stimulation are newer waveforms that have demonstrated promise compared to traditional tonic spinal cord stimulation (SCS), but more studies are needed to compare their effectiveness. We report the study methods for an ongoing, single center, pragmatic randomized clinical trial to compare the effectiveness of high-frequency and burst SCS in patients with chronic back and/or leg pain. MATERIALS AND METHODS: Participants who are candidates for spinal cord stimulation are enrolled and screened. Participants will be randomly assigned using point-of-care randomization to receive either high-frequency or burst SCS. Data collection will be through Stanford Pain Management Center s learning healthcare system: CHOIR. CHOIR surveys include National Institutes of Health Patient Reported Outcomes Measurement Information System item banks, a body map, questions about pain intensity, pain catastrophizing scale, and questions about patients pain experience and healthcare utilization. Participants will complete online surveys at baseline and then 1, 3, 6, 12, 18, 24 and 36 months after their device implant. All participants will use our routine process of trial and implant. Reported adverse events are monitored throughout the study. Our primary outcome is change from baseline in pain intensity at 12 months. RESULTS: We hypothesize that high-frequency SCS is more effective than burst SCS in improving pain, physical function and pain interference in participants with chronic low back and/or leg pain. CONCLUSIONS: The pragmatic nature of our proposed trial enables us to recruit a larger participant cohort faster and to follow up these participants longer than currently published clinical trials.
2020
Importance Chronic low back pain has high societal and personal impact but remains challenging to treat. Electroacupuncture has demonstrated superior analgesia compared with placebo in animal studies but has not been extensively studied in human chronic pain conditions.
Objective To evaluate the treatment effect of real electroacupuncture vs placebo in pain and disability among adults with chronic low back pain and to explore psychophysical, affective, and demographic factors associated with response to electroacupuncture vs placebo in treating chronic low back pain.
Design, Setting, and Participants This double-blind randomized clinical trial was conducted between August 2, 2016, and December 18, 2018, at a single center in Stanford, California. Primary outcomes were collected at approximately 2 weeks before and after intervention. Participants included English-speaking adults with at least 6 months of chronic low back pain, pain intensity of at least 4 on a scale of 0 to 10, and no radiculopathy. Data analyses for this intent-to-treat study were conducted from June 2019 to June 2020.
Interventions Twelve sessions of real or placebo (sham) electroacupuncture administered twice a week over 6 weeks.
Main Outcomes and Measures The main outcome was change in pain severity from baseline to 2 weeks after completion of treatment, measured by the National Institutes of Health PROMIS pain intensity scale. A secondary outcome was change in the Roland Morris Disability Questionnaire (RMDQ). Baseline factors potentially associated with these outcomes included psychophysical testing (ie, thermal temporal summation, conditioned pain modulation, pressure pain threshold), participant’s self-report (ie, widespread pain, coping strategies, expectations, self-efficacy, and pain catastrophizing), and demographic characteristics (eg, age, sex, and race).
Results A total of 121 adults were recruited to the study, among whom 59 participants (mean [SD] age, 46.8 [11.9] years; 36 [61.0%] women) were randomized to real electroacupuncture and 62 participants (mean [SD] age, 45.6 [12.8] years; 33 [53.2%] women) were randomized to sham electroacupuncture. At baseline, the mean (SD) PROMIS T-score was 50.49 (3.36) in the real electroacupuncture group and 51.71 (4.70) in the sham acupuncture group, and the mean (SD) RMDQ score was 10.16 (4.76) in the real electroacupuncture group and 10.03 (5.45) in the sham acupuncture group. After adjusting for baseline pain scores, there was no statistically significant difference between groups in change in T-scores 2 weeks after completion of treatment (real electroacupuncture: −4.33; 95% CI, −6.36 to −2.30; sham acupuncture: −2.90; 95% CI, −4.85 to −0.95; difference: −2.09; 95% CI, −4.27 to 0.09; P = .06). After adjusting for baseline RMDQ, there was a significantly greater reduction in RMDQ in the real electroacupuncture group (−2.77; 95% CI, −4.11 to −1.43) compared with the sham electroacupuncture group (−0.67; 95% CI, −1.88 to 0.55; difference: −2.11; 95% CI, −3.75 to −0.47; P = .01). Within the real electroacupuncture group, effective coping at baseline was associated with greater RMDQ reduction (r = −0.32; 95% CI, −0.54 to −0.05; P = .02), and White race was associated with worse outcomes in PROMIS score (β = 3.791; 95% CI, 0.616 to 6.965; P = .02) and RMDQ (β = 2.878; 95% CI, 0.506 to 5.250; P = .02).
Conclusions and Relevance This randomized clinical trial found no statistically significant difference in change in PROMIS pain score in real electroacupuncture vs sham electroacupuncture. There was a statistically significant treatment effect for the secondary outcome of RMDQ compared with sham electroacupuncture. Effective coping skills and non-White race were associated with response to electroacupuncture.